Morita’s Theory for the Symplectic Groups
نویسندگان
چکیده
We construct and study the holomorphic discrete series representation and the principal series representation of the symplectic group Sp(2n, F) over a p-adic field F as well as a duality between some sub-representations of these two representations. The constructions of these two representations generalize those defined in Morita and Murase’s works. Moreover, Morita built a duality for SL(2, F) defined by residues. We view the duality constructed here as an algebraic interpretation of Morita’s duality in some extent and its generalization to the symplectic groups.
منابع مشابه
Morita’s duality for split reductive groups
In this paper, we extend the work in Morita’s Theory for the Symplectic Groups [7] to split reductive groups. We construct and study the holomorphic discrete series representation and the principal series representation of a split reductive group G over a p-adic field F as well as a duality between certain sub-representations of these two representations.
متن کاملTheta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملOn the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
متن کامل